Use of Internal Controls in Clinical PCR Assays

KJ Mutton & M Guiver
HPA NW & Clinical Virology
Manchester Royal Infirmary
Internal controls detect inhibitors of amplification

- False negative PCRs
 - Failure of one or more reagents
 - Failure of amplification
 - Failure of thermal cycling
 - Inhibition of amplification
 - Failure of reporting of reaction
Recent events highlight risks of false negative results

- **False negative qualitative HCV PCR result**
- **In house HCV PCR assay**
 - used for confirmation of initial anti-HCV Ab reactivity
 - long established assay
 - No internal amplification control

- Discrepancy noted 23/4/10 in renal patient
 - Negative in qualitative HCV PCR
 - previously Positive

- **Sample inhibitory** in commercial quantitative PCR
 - 635,118 IU/ml
 - two other samples qualitative PCR negative
Laboratory lookback shows extent of false negative results

90 Qualitative PCR Negative Antibody Positive samples retested by commercial assay
- 79 (88%) Negative PCR by quantitative assay
- 11 (12%) Positive (3 with VL >50000 IU/ml).

153 samples re-tested retrospectively using an internal control of amplification
- 3 (2%) were found to give complete inhibition
- further 21 (14%) were partially inhibitory.
 - Dilution of serum 1 in 10 diluted out the inhibitors in most cases
 - No changes in sequence affecting primer/probe sites

- 12-16% false negative PCR rate
- Potential failure to treat active HCV cases
Commercial assays tend to include IC

- **Commercial**
 - Regulation
 - High volume – developmental/returns

- **In house**
 - Historical – gel based
 - Evolution of tests – increased clinical utility
 - Inertia on redeveloping old assays – development priority
 - Effort
 - Cost
 - Consensus/strategy
 - Organizations
 - Validation may not show need eg tma / csf
Assessing extent of IC problem

Questionnaire 1

- 10 HPA regional/collaborating laboratories

- to audit HCV confirmation strategies
 - VSOP5

- to assess in house assay use and internal controls
 - hepatitis C
 - other hepatitis virus PCRs
 - other
 - bacterial
 - fungal
 - parasitic
Questionnaire 1

• **Qualitative HCV PCR?**
 2 in house real time
 1 in house block based
 2 commercial real time

• **With internal amplification control**
 1 in house RT
 2 commercial

• **any in house assays without inhibitor controls?**
 Yes 7
 No 3

Questionnaire 2

HPA Reference Laboratory PCRs
Questionnaire 3

• CVN/HPA Questionnaire
• information on in house assay IC use
• 12 responses, most from larger Virology centres

Only 1 (SVC) had IC in every assay
Range of assays performed

- **Viral**
 - (HCV)
 - HIV, HBV
 - adenovirus, HSV, VZ, CMV, EBV
 - respiratory panels
 - norovirus, astrovirus, sapovirus, rotavirus
 - enterovirus, parechovirus
 - BK and JC polyomaviruses
 - measles
 - genotyping HCV etc

- **Bacterial**
 - 16S (1), *S.aureus* PVL (1), *T.pallidum* (2)

- **Parasitic**
 - *Toxoplasma gondii* (1)

- **Fungal**
 - *Aspergillus* (1), *Pneumocystis jirovecii* (2), *Candida* spp
Examples show variation in IC use and type

- **CMV** 6 assays 6 IC
 - BMV 1
 - Murine CMV 1
 - Phocine herpes 1
 - Exogenous synthetic DNA oligonucleotide 3

- **HSV** 7 assays 5 IC
 - BMV 1
 - Murine CMV 1
 - Exogenous synthetic DNA oligonucleotide 3
 - Endogenous RNase P 1

- **EBV** 3 assays 2 IC
 - Murine CMV 1
 - Endogenous RNaseP 1

- **Adenovirus** 9 assays 5 IC
 - Mengovirus cDNA 1
 - Murine CMV 2
 - Exogenous synthetic DNA oligonucleotide 1
 - Endogenous RNAse P 1
Examples show variation in IC use and type

- **RSV** 6 assays 5 IC
 - Mengovirus RNA 1
 - BMV 2
 - MS2 phage 1
 - Phocine distemper 1

- **Parainfluenza** 6 assays 5 IC
 - Mengovirus RNA 1
 - BMV 2
 - MS2 phage 1
 - Phocine distemper 1

- **Influenza**
- **Influenza H1 N1**
Stage of addition of IC

<table>
<thead>
<tr>
<th>Virus</th>
<th>Whole process</th>
<th>Amplification only</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMV</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>HSV</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>influenza</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>norovirus</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>
IC: separate target or multiplexed with test target

<table>
<thead>
<tr>
<th></th>
<th>separate</th>
<th>multiplex</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMV</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>HSV</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>influenza</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>norovirus</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>
monitoring IC performance

<table>
<thead>
<tr>
<th></th>
<th>Interface to QC software</th>
<th>Interface to LIMS</th>
<th>Manual record</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMV</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>HSV</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>influenza</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>norovirus</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Validation of test run:
IC used as Pass/Fail

e.g. cutoff mean CT of IC + 3SD
Conclusions – further consideration

• Need for internal amplification controls
 – Range of assays still lack IC
 • Improving
 • prioritise assays/specimen types
 • revalidation of assay required if internal control added

 – Range of approaches

 – **Standardisation**?
 • consider rationalizing range of internal controls being used
 – **Consensus**
 – Better standardisation
 – Reduced cost
 – Improved quality

 • consider IT requirements for monitoring
 • consider
 – whole process controls
 – PCR only controls
 – endogenous gene assessing sample adequacy
 » Hierarchy of ‘adequacy’ of control

• **EQA/IQA**
 – ensure *all* assays are adequately tested